DEPARTMENT OF THE TREASURY

Internal Revenue Service

26 CFR Part 53

[TD 9629]

RIN 1545–BL58

Requirement of a Section 4959 Excise Tax Return and Time for Filing the Return; Correction

AGENCY: Internal Revenue Service (IRS), Treasury.

ACTION: Final and temporary regulations; correction

SUMMARY: This document contains corrections to final and temporary regulations (TD 9629) that were published in the Federal Register on Thursday, August 15, 2013 (78 FR 49681). The regulations provide guidance to charitable hospital organizations regarding the requirement of a return to accompany payment of the excise tax, enacted as part of the Patient Protection and Affordable Care Act of 2010, for failure to meet the community health needs assessment (CHNA) requirements for any taxable year.

DATES: Effective September 26, 2013.

FOR FURTHER INFORMATION CONTACT: Lori Santamorena, Executive Director, or Chuck Andreatta, Associate Director, Government Securities Regulations Staff, Bureau of the Fiscal Service, Department of the Treasury, (202) 504–3632.

SUPPLEMENTARY INFORMATION: This is the third set of corrections. The first set of corrections was published in the Federal Register on August 19, 2013 (78 FR 50335). The second set of corrections was published in the Federal Register on August 27, 2013 (78 FR 52857). This document augments those corrections.

List of Subjects in 31 CFR Part 356

Accordingly, 31 CFR part 356 is corrected by making the following correcting amendments:

PART 356—SALE AND ISSUE OF MARKETABLE BOOK-ENTRY TREASURY BILLS, NOTES, AND BONDS (DEPARTMENT OF THE TREASURY CIRCULAR, PUBLIC DEBT SERIES NO. 1–93)

■ 1. The authority citation for part 356 continues to read as follows:

■ 2. In Appendix B to Part 356:

a. In Section IV, subsection C, in the Formula, remove the first equation.
\[P_D = \frac{100 \times \frac{1}{360} \sum_{j=T_{-1}}^{T_0} \max (r_j + s, 0)}{1 + \frac{1}{360} (T_1 - T_0) \times (r + m)} \]
\[+ \sum_{i=1}^{N} \left(\frac{100 \times \frac{1}{360} (T_i - T_{i-1}) \times \max (r + s, 0)}{\prod_{k=1}^{i} \left(1 + \frac{1}{360} (T_k - T_{k-1}) \times (r + m)\right)} \right) \]
\[+ \frac{100}{\prod_{k=1}^{N} \left(1 + \frac{1}{360} (T_k - T_{k-1}) \times (r + m)\right)} \]

and add in its place

\[P_D = \frac{100 \times \frac{1}{360} \sum_{j=T_{-1}}^{T_0} \max (r_j + s, 0)}{1 + \frac{1}{360} (T_1 - T_0) \times (r + m)} \]
\[+ \sum_{i=1}^{N} \left(\frac{100 \times \frac{1}{360} (T_i - T_{i-1}) \times \max (r + s, 0)}{\prod_{k=1}^{i} \left(1 + \frac{1}{360} (T_k - T_{k-1}) \times (r + m)\right)} \right) \]
\[+ \frac{100}{\prod_{k=1}^{N} \left(1 + \frac{1}{360} (T_k - T_{k-1}) \times (r + m)\right)} \]

b. In Section IV, subsection C, in the Formula, remove the second equation

\[AI = 100 \times \frac{1}{360} \sum_{j=T_{-1}}^{T_0} \max (r_j + s, 0) \]

and add in its place

\[AI = 100 \times \frac{1}{360} \sum_{j=T_{-1}}^{T_0} \max (r_j + s, 0) \]

c. In Section IV, subsection D, in the Example, revise the first sentence of the introductory text and paragraph (b) to read as set forth below.

d. In Section IV, subsection E, in the Formula, remove the first equation
e. In Section IV, subsection E, in the Formula, remove the second equation

\[P_D = \frac{100 \times \frac{1}{360} \sum_{j=T_{i-1}}^{T_0} \max (r_j + s, 0)}{1 + \frac{1}{360} (T_i - T_0) \times (r + m)} \]

and add in its place

\[P_D = \frac{100 \times \frac{1}{360} \sum_{j=T_{i-1}}^{T_0-1} \max (r_j + s, 0)}{1 + \frac{1}{360} (T_i - T_0) \times (r + m)} \]

The revision reads as follows:

Appendix B to Part 356—Formulas and Tables

D. For calculating interest payments:

Example:

For a new issue of a two-year floating rate note auctioned on July 25, 2012, and issued on July 31, 2012, with a maturity date of July 31, 2014, and a first interest payment date of October 31, 2012, calculate the quarterly interest payments (\(IP \)) per 100. * * *

(b) If it is a reopened floating rate note, and the interest payment is the first one after the reopening, then

\[IP = 100 \times \frac{1}{360} \sum_{j=T_{i-1}}^{T_0-1} \max (r_j + s, 0) + 100 \times \frac{1}{360} (T_i - T_0) \times \max (r + s, 0) \]